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ABSTRACT

This report summarizes the characteristics of the idealized one-dimensional turbulent
channel flow for which the 17-Meter Flume was designed, and describes a measurement pro-
gram designed to determine whether the flume can in fact produce such a flow. The measured
quantities include mean velocities, Reynolds stresses, turbulence intensities and velocity spec-
tra. Measured profiles of mean velocity, Reynolds stress and turbulence intensity are consis-
tent with previous theoretical and empirical results. Measured spectra, although consistent
with expectations over a wide range of frequencies, indicate a few unexpected features, includ-
ing a constant spectral density at high frequencies (possibly due to aliaginZ cr high-fre,,-Tiry
noise), motion at a few well-defined high frequencies of order 10 hz (possibly due to structual
vibrations), oscillations with time scales of order 30 s (possibly due to low-mode standing
surface waves) and irregular motions with time scales of several minutes (possibly due to
fluctuations in pump performance). The unexpected features indicated by the spectra at
high and low frequencies do not have a significant effect on mean velocities and low-order
statistics, but they may be important in some applications.
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1 INTriODUCTION

This report presents results of a measurement program designed to evaluate the per-
formance of the 17-Meter Flume, located in the Coastal Research Laboratory at the Woods
Hole Oceanographic Institution. A companion report (Butman and Chapman, 1989) gives
a comprehensive description of the geometry of the flume, the associated hardware and in-
strumentation, the data acquisition and preliminary processing systems, and procedures for
operation.

The 17-Meter Flume is designed to have a long working section in which one can produce
a turbulent flow with mean properties that are approximately independent of time, inde-
pendent of along-channel position, and, at least near the channel centerline, independent of
cross-channel position. This type of flow is one-dimensional in the sense that mean quanti-
ties depend on only one spatial coordinate (perpendicular distance away from the bottom).
The measurement program described here was designed to determine whether the 17-Meter
Flume can in fact produce an approximately one-dimensional channel flow with the expected
properties.

A brief description of the 17-Meter Flume is necessary for the purposes of this report.
Figure 1 is a diagram of the flume. The raceway has a length of 17 m, a width of 60 cm,
and a depth of 30 cm. The flow in the raceway is driven by gravity, and the bottom slope
is adjustable by means of hydraulic jacks. Flow straighteners eliminate secondary currcaLs
at the upstream end of the raceway, and an adjustable weir at the downstream end provides
depth control. The flow from the raceway can be channeled either directly into a sump, or
into a settling basin, which ultimately leads to the sump. A centrifugal pump drives the flow
from the sump through a return pipe to the upstream end of the raceway. Windows in the
walls of the raceway allow optical measurements. The raceway currently has a smooth PVC
false bottom.

The measurements described in this report were obtained with a two-axis forward-scatter-
ing laser-Doppler velocimeter (LDV), described by Agrawal and Belting (1988). The LDV is
mounted on an automated traversing system, and it is oriented to measure velocity compo-
nents in the z - z plane (x is the along-channel coordinate, and z is normal to the floor of the
channel). The LDV is currently configured to sample at a rate of 32 hz. Data acquisition and
preliminary processing are carried out by a personal computer (see Butman and Chapman,
1989, for more details).

This report is organized as follows. Section 2 is a description '-f the idealized one-
dimensional flow for which the 17-Meter Flume was designed. Section 3 describes the mea-
surements that we obtained in the 17-Meter Flume, including a comparison with the idealized
characteristics described in Section 2. Section 4 presents a summary and conclusions.
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2 BACKGROUND

In the case of clear water and a fixed smooth or rough bottom, the basic properties of
one-dimensional turbulent flow in an open channel are well established by classical analyses
(e.g. Millikan, 1939; Clauser, 1956; Coles, 1956) and experimental studies (e.g. Nezu and
Rodi, 1986). A detailed description of the characteristics of one-dimensional channel flows can
be obtained from several texts (e.g. Monin and Yaglom, 1971; Tennekes and Lumley, 1972;
Hinze, 1975), and less rigorous accounts oriented toward biological and geological applications
are also available (e.g. Komar, 1976; Nowell and Jumars, 1987). The present discussion is a
brief surnmary of the basic results needed for the measurement program described in Section
3.

2.1 ESTABLISHMENT OF ONE-DIMENSIONAL FLOW

In order to produce a flow with mean properties that are approximately independent
of along-channel position, one must set the discharge, bottom slope and downstream depth
control properly (for a complete discussion of the hydraulic aspects of this problem, see for
example Henderson, 1966). In most applications that are anticipated in the 17-Meter Flume,
proper flume settings can be achieved by a fairly straightforward, although possibly time-
consuming, iterative procedure (see Butman and Chapman, 1989).

In addition, in order to produce a flow that is approximately one-dimensional, an open
channel must be sufficiently long (to allow the vertical structure to evolve from poorly con-
strained conditions at the channel entrance) and sufficiently wide (to eliminate the effects
of the channel walls on the flow near the centerline). Simplified calculations based on the
characteristics of turbulent boundary layers near flat plates (e.g. Schlichting, 1979), as well
as conventional wisdom, suggest that the vertical structure of a turbulent open-channel flow
is fully developed at distances greater than roughly 50 to 100 water depths downstream of
the channel entrance. Based on laboratory measurements, Nakagawa et al. (1982) suggested
that a turbulent open-channel flow is independent of cross-channel position at distances from
the channel centerline less than about (1/2)h[(b/h) - 4], where b is the channel width and h
is the water depth. This information indicates that the 17-Meter Flume can in fact produce a
long section ,r which the flow is approximately one-dimensional near the channel centerline,
if the depth is less than about 15 cm.

2.2 DIMENSIONLESS PARAMETERS AND SCALES

The statistical properties of steady one-dimensional turbulent flow in an open channel are
in principle determined completely by the mean bottom shear stress ra, the depth h, the kine-
matic viscosity v, the gravitational acceleration g, the density p and the characteristics of the
bottom. For simplicity we assume that the bottom is fixed and characterized completely by a
single representative length, the Nikuradse equivalent sand roughness k, (Schlichting, 1979).

9



According to the principles of dimensional analysis and dynamic similarity (e.g. Schlichting,
1979), the flow may alternatively be characterized by three dimensionless parameters, which
may be chosen in several ways. Here we use the Froude number U/(gh)11 2, the Reynolds
number ush/v, and the roughness Reynolds number uokl/v. The quantity u. is the shear
velocity, equal to (rb/p)1/2, and U is the depth-averaged mean velocity, which is in princi-
ple a unique function of rb, h, v, p, g and k,. We have chosen these particular dimensionless
parameters because of their physical significance, discussed below.

The Froude number is the ratio of the depth-averaged flow speed to the propagation
speed of long, small-amplitude surface waves. Although the Froi'de number is in general
an important parameter characterizing open-channel flows (e.g. Henderson, 1966), it does
not have a significant effect on the vertical structure of the flow if the mean properties are
truly steady and independent of streamwise position, as assumed in the present discussion.
It is worth noting, however, that at Froude numbers very near unity the free surface may
respond dramatically to small irregularities in the bottom slope. In addition, the flow may
be unstable to transient surface waves if the Froude number is greater than roughly two.
Therefore, steady, fully developed flows may be difficult to establish at some values of the
Froude number.

The Reynolds number u.h/v is roughly proportional to the ratio of inertial to viscous
effects in the large-scale energy-containing turbulent eddies. If u.h/V is sufficiently large
(greater than roughly one thousand), viscosity has a direct effect on the mean motion and
the large-scale eddies only in a thin viscous sublayer near the bottom, which has a thickness
of order 1Ozv/u.. At large u~h/zv, the mean motion and large-scale fluctuations outside of
the viscous sublayer are essentially independent of u.h/ii, so that the precise value of the
Reynolds number may be unimportant for many purposes.

The roughness Reynolds number is proportional to the ratio of the roughness scale to the
thickness of the viscous sublayer. If the roughness Reynolds number is less than about five, the
roughness has no significant effect on the flow, so that the bottom is effectively smooth. If the
roughness Reynolds number is greater than about seventy, the viscous sublayer is completely
disrupted, and the viscosity has very little direct effect on the mean flow or the large-scale
fluctuations.

Outside of the region very near the bottom that is directly affected by viscosity and the de-
tailed geometry of the roughness elements, the turbulent motion spans a wide range of spatial
scales. The energetic eddies responsible for most of the momentum transfer have an intensity
of order u., and a length scale that is limited by the vertical extent of the flow, so that the
length scale is roughly proportional to h. The much weaker velocity fluctuations responsible
for viscous dissipation of energy have much smaller spatial scales, of order h(u h/v)-3/4 (e.g.
Tennekes and Lumley, 1972). The time required for an eddy with scale I to be advected past
a fixed point by the mean motion is of order i/U. Therefore, a velocity record at a fixed
measurement station obtained by an ideal sensor will have energetic fluctuations with a time
scale of order h/U, and weaker fluctuations spanning a wide range of smaller time scales to a
minimum of order (h/U)(u.h/v)-3 /4. Fluctuations will also occur at time scales longer than
h/U.

10



As an example typical of the 17-Meter Flume, we may consider flow of water at room
temperature (20°C) over a smooth bottom, with a depth of 10 cm and a shear velocity of
2 cm/s. Under these conditions, the kinematic viscosity is 0.01 cm 2 /s, the depth-averaged
velocity is about 40 cm/s, the thickness of the viscous sublayer is about 0.05 cm, the scale of
the energy-containing eddies is 10 cm, and the scale of the smallest eddies is about 0.03 cm.
The time required for an energetic eddy to be advected past a fixed station is of order 0.25 s,
and the time required for the smallest eddies to be advected past a fixed station is of order
0.001 s. Many instruments (e.g. the LDV in the 17-Meter Flume) have effective measurement
volumes with dimensions larger than 0.03 cm. Therefore, these instruments cannot resolve
the smallest scales in the flow considered here. The smallest time scales in records produced
by these instruments are limited by the size of the measurement volume, rather than by the
scale of the smallest eddies.

2.3 THE MEAN STRESS DISTRIBUTION

The distribution of the shear stress in a one-dimensional open-channel flow may be
obtained by applying the momentum principle to the control volume shown in Figure 2. The
control volume has unit length in the along-channel direction and unit width in the direction
normal to the sketch. The bottom of the control volume is at a distance z away from the
bottom, and the height of the control volume is h - z, where h is the water depth, as before.
The along-channel coordinate is x, the bottom slope is 0, and gravitational acceleration is
g, as before. Because of the assumption of one-dimensional flow, the water surface and the
mean velocity are parallel to the bottom.

I"-- UNIT LENGTH - ,

[ , h-z

h.... ,flume channel
M z

,, ,~a. ... X

Figure 2: Control volume for analysis of the mean stress distribution in turbulent
one-dimensional open-channel flow. The dashed lines indicate the control
volume. Fg is the z-component of the gravitational force, F', is the force due
to the viscous shear stress, and M is the momentum flux across the bottom
of the control volume.
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According to the momentum principle, the mean force acting on the control volume and
the mean momentum flux into the control volume must sum to zero. Because of the assump-
tion of one-dimensional flow, the mean forces and momentum fluxes at the left and right
ends of the control volume are identical, and therefore cancel and do not contribute to the
mean momentum balance. The force due to the mean viscous stress acting on the bottom of
the control volume is pv(d-/dz), where p and v are the density and kinematic viscosity, as
before, and U(z) is the mean along-channel velocity. The viscous stress acts in the negative
x direction, so that it retards the fluid in the control volume. The x component of the grav-
itational force acting on the control volume is pgsin(O)(h - z). The gravitational force acts
in the positive x direction, so that it would accelerate the fluid in the control volume in the
absence of other effects. The mean momentum flux across the bottom of the control volume is
Pirw'. Here u' is the velocity fluctuation (instantaneous velocity minus mean velocity) in the
x direction, w' is the velocity fluctuation in the z direction, and an overbar denotes a mean.
Although there is no mean flow across the bottom of the control volume, there is a mean
momentum flux, because u' and w' are correlated. If u'w' were positive, the mean momentum
flux would add momentum to the fluid in the control volume. In reality, however, ulw' is
negative, so that the mean momentum flux extracts momentum from the control volume.

By requiring the mean forces and momentum fluxes to sum to zero, we obtain

d-i
pu'w- + pg sin(O)(h - z) - pv T- = 0. (1)

This expression can be rewritten:

r = PV- - P '= r ( . (2)

Here r is the total shear stress, equal to the sum of the viscous stress pud-/dz and the Reynolds
stress -pu'wi (actually a mean momentum flux due to turbulent velocity fluctuations, which
acts like a stress). The quantity rb is the bottom shear stress, as before, given by

rb = pghsin(O). (3)

Equation (2) shows that the total shear stress varies linearly with distance above the bottom,
and equation (3) shows that the bottom shear stress balances the down-slope component of
the weight of the water column. Equation (2) may alternatively be written

z) du-
P bPVYW.Z (4)

By combining this expression with an equation for the mean velocity U(z) (see Section 2.4),
one can obtain an expression for the Reynolds stress as a function of z. Well outside of the
viscous sublayer (z greater than about 50/u.), the second term on the right side of equation
(4) is much smaller than the first, so that equation (4) approximates

- UIo f' Tb 1- 0. (5)
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Equation (5) shows that the Reynolds stress varies approximately linearly with z well outside
of the viscous sublayer.

The above analysis applies to steady, one-dimensional open-channel flows above both
smooth and rough bottoms. If the bottom is smooth, ulwl must be zero at the bottom, so
that the bottom stress is wholly a viscous shear stress. If the bottom is rough, the analysis
breaks down within a few characteristic roughness lengths of the bottom, because of the
assumption that the mean flow is parallel to the surface, which is not valid in the immediate
vicinity of the roughness elements. The bottom stress on a rough bottom is transmitted in
part by normal stresses acting on the sides of the roughness elements.

2.4 THE MEAN VELOCITY DISTRIBUTION

A general semi-empirical expression for the mean velocity in a steady, one-dimensional,
open-channel flow above a smooth bottom is

U(z) = u.f(z+) + u.W( ) (6)

(Nezu and Rodi, 1986). Here u. is the shear velocity, as before, z+ is zu./v, is z/h, and
f(z+) and W() are empirical functions.

In the inner part of the flow (C = z/h less than about 0.2) the second term on the right
side of equation (6) is much smaller than the first, and the velocity distribution is described
by the wall function f(z+), which is the same in the wall region of any turbulent shear flow
(e.g. channel flow, pipe flow, boundary layer flow) above a smooth surface (Clauser, 1956).
Well inside of the viscous sublayer (z+ less than about 5), f (z+) is approximately equal to
z+. Well outside of the viscous sublayer (z+ greater than about 50), f(z+) is approximately
logarithmic:

f(z+) ln(z+) + A (7)
Ic

where x is the empirical Karman constant and A is a second empirical constant. The com-
monly accepted values are x _ 0.40 and A !-- 5.5 (Nezu and Rodi, 1986). Reichardt (see
Landahl, 1967) proposed the following empirical expression valid for all z+:

f(z+) = !In(1 + rCz+) +,j[1 - exp (- ) (z) exp(-0.33z+)] (8)

where -/ and 8, are empirical constants. Landahl used 6,, = 11.0 and -y = 7.4, which corre-
sponds to A = 5.1 in equation (7). Here we use -1 = 7.8 to correspond to the currently more
commonly accepted value A = 5.5.

In the outer part of the flow ( = z/h greater than about 0.2), the second term on the
right side of equation (6), which is the wake correction introduced by Coles (1956), becomes
significant. The shape of the wake correction is approximately the same for all wall-bounded
turbulent shear flows, but its strength depends on the type of flow (e.g. the wake correction

13



is larger in a boundary layer with zero pressure gradient than it is in an open channel flow).

An empirical expression for the wake correction W() is

W() = -sin (2 ) (9)

(Coles, 1956) where II is the empirical Coles parameter, which determines the strength of the
wake correction. For steady, one-dimensional, open-channel flow Nezu and Rodi (1986) found
that 11 depends on the Reynolds number, increasing from a value of zero for hu./v less than
about 500 to a constant value of approximately 0.2 for hu./v greater than about 2000.

The following commonly used logarithmic approximation to the mean velocity profile
above a smooth wall may be obtained by neglecting the wake correction and using the ap-
proximation (7):

V(z) c-- n (- -) + A. (10)

Equation (10) is valid only in the relatively thin layer in which z is greater than about 50v/u.
but less than about 0.2h.

Figure 3 shows a graph of the mean velocity profile in an open channel flow above a
smooth bottom, based on equations (6), (8) and (9), for conditions typical of the 17-Meter
Flume (a depth h of 10 cm, a shear velocity u. of 2.0 cm/s, and a kinematic viscosity v of
0.01 cm 2 /s). Figure 3 also shows the corresponding logarithmic approximation (10). For z
less than about 0.25 cm the viscous correction to the logarithmic approximation is negative,
and for z greater than about 2 cm the wake correction to the logarithmic approximation
is positive. The logarithmic approximation (10) is accurate in less than 20% of the water
column, in this example.

If the bottom is fixed and rough, instead of smooth, the wake correction is unchanged, but
the wall function f(z+) must be modified to incorporate the effect of roughness. Equation
(6) must be replaced by

ii(z) =U~f' z(I, ks ) + U-W(o)(1

where k, is the equivalent Nikuradse sand roughness of the bottom, as before. For zu./v
greater than about 50 and sufficiently large z/k. (in practice z/k. greater than very roughly
one), f'(z/k,,ku./v) is logarithmic:

uz k~u') ( z()+ B( .u) (12)

where B(k.u./l,) is an empirical function (Schlichting, 1979). If k,u./v is less than about 5,
the bottom is hydrodynamically smooth, and equation (12) matches equation (7). If ksu./v is
greater than about 70, the bottom is hydrodynamically rough, and B(k, u./v) has a constant
value of about 8.5 (Schlichting, 1979).
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If the bottom is rough or smooth, and we consider the region in which z/h is less than
about 0.2 while z is greater than about 50./u. or roughly k, (whichever is greater), we may
neglect the wake correction and use equation (12) to obtain the following commonly used
logarithmic approximation:

Here z. is the wall roughness scale, which is a function of ku./v given by

Zo = k.exp[-xB(k~u./v)]. (14)

In principle one can use equation (13) with mean velocity measurements in the appropriate
region in order to estimate the shear velocity, by regressing measurements of U(z) against
In(z). This is the log profile technique for estimating the shear velocity (e.g. Grant et al.
1984).

M 0
0

0

0

z
0
P:

u -2

0
-.J

0 10 20 30 440 so 60

MEAN VELOCITY (cm/s)

Figure 3: Velocity profile in turbulent one-dimensional open channel flow for h 10 cm,
u. = 2.0 cm/s and V = 0.01 cm2 /s. Solid line: complete profile based on
equations (6), (8) and (9). Dashed line: logarithmic approximation based on
equation (10).

2.5 TURBULENCE INTENSITIES AND SPECTRA

Nezu and Rodi (1986) suggested the following empirical expressions for the root-mean-
square turbulent velocity fluctuations in a one-dimensional open channel flow above a smooth
bottom, for the region in which zu./v is greater than about 50 and z/h is less than about
0.6:
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U - D- ep(-A ) (15)

(i,-)1/2

= D ,ep(-A,). (16)

Here D., A, D. and A, are empirical constants and the other symbols have the same mean-
ings as before. Nezu and Rodi found D,, !- 2.26,Au - 0.88, D, = 1.23,A, - 0.67. Nezu and

Rodi (1986) also suggested the following empirical expression for all z/h less than about 0.6:

(-/ = Duexp(-xu )r + 0.3z+(1 - r)(17)
U,

where
r =1- exp (18)

They suggested that B' - 10. Presumably equations (15) and (16) apply to rough as well
as smooth walls, because these equations are normalized by the "outer" variables u. and h.

Equation (17) apparently applies only to smooth walls.

It is convenient to define the following spatial correlation functions:

11 = (u'(x, y, z, t)u'(z + L, y, z, t)) (19)

-33 = (w'(x, y, z, t) '(x + L, y, z, t)) (20)

where angular brackets denote a mean value. The corresponding wavenumber spectra are

1 (k)= -fu (L)e -kLdL (21)

033(k= - 0(L)e -  dL (22)

The above spatial correlation functions and wavenumber spectra are of fundamental inter-
est, but are difficult to measure directly. The more easily measurable temporal correlation
functions are

RI(T) = (u'(x, y, z, t)u'(z, y, z, t + T)) (23)

R 3 3 (T) = (w'(z, y, z, t)w'(z, y, z, t + T)) (24)

and the corresponding frequency spectra are

1( +0 R,1(T)ewT dT (25)S11(W) = - f- 00

S 33 (W) = f R3 3(T)e dT (26)

According to Taylor's frozen turbulence hypothesis, the fluctuating cowponent of tle tur-
bulent velocity field may for some purposes be regarded as if it were being advected along,
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without changing structure, by the mean flow. An analysis based on the frozen turbulence
hypothesis shows the wavenumber and frequency spectra are related by

011(k) = U(z)Sll[U(z)k (27)

0 33 (k) = ii(z)S 33[J(z)k] (28)

where U(z) is the mean velocity at the elevation of interest.

According to Kolmogorov's universal equilibrium theory (see Batchelor, 1967) an inertial
subrange exists in the wavenumber spectrum if the Reynolds number is sufficiently large. In
the inertial subrange, the inverse wavenumber is much smaller than the scale of the energy
containing eddies but much larger than the scale of the dissipative eddies, and it is reasonable
to assume that the wavenumber spectrum depends only on the wavenumber and the local
mean rate of energy dissipation per unit mass (e). The following relationships then follow
from dimensional analysis:

tkIl(k) = ale2 / 3 k- 1/ (29)

0,33(k) = oe3 
2/3k - 6/ 3. (30)

Here cai and Q3 are empirical constants, related in principle, because of the assumed isotropy
of the small-scale motion, by a 3 = (4/3)ai. The values of the empirical constants are poorly
determined at present. Grant et al. (1984) suggested al n 0.4 and a3 = (4/3)ci = 0.5.
The existence of a well-developed inertial subrange requires that the scale of the large-scale
motion must be very much larger than the scale of the dissipative motions, so that (u.h/v)3!s

must be much larger than unity (Batchelor, 1967). A well developed inertial subrange often
does not exist in a small-scale laboratory channel.

3 MEASUREMENTS AND DISCUSSION

The purpose of the measurement program reported here was to determine whether the
17-Meter Flume can produce a flow with the idealized characteristics described in Section 2.
The measurement program consisted of three components. The first was a set of preliminary
measurements designed to establish an adequate sampling scheme, to establish repeatability
of measurements, and to establish approximate independence of along-stream position and
cross-stream position. The second component of the measurement program was a set of
vertical profiles of mean velocity, Reynolds stress and turbulence intensity at a fixed location
under five different sets of flow conditions. The third component was a set of long records at
a fixed point under different flow conditions, used to compute spectra and examine frequency
content. All measurements were carried out above the smooth PVC false bottom, with the
two-axis LDV sampling at a rate of 32 hz.

3.1 PRELIMINARY MEASUREMENTS

We carried out the preliminary measurements under a fixed set of conditions in which
the water temperature was 20*C, the nominal water depth was 12 cm, and the nominal flow
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speed at the water surface was 10 cm/s. The bottom slope required to drive a uniform flow
over a smooth bottom under these conditions (about 2 x 10- 5 , corresponding to a drop in
elevation of about 0.04 cm over the entire 17-m length of the raceway) is comparable to the
estimated resolution of our measurements of bottom slope, and is smaller than the slope of
the irregularities in the bottom of the flume. We therefore set the bottom slope as closely
as possible to zero. The flow was driven against the retarding action of boundary friction
by a streamwise pressure gradient set up by a small unresolved surface slope, acting with
or against a small unresolved bottom slope. Although this flow differs in detail from the
idealized uniform flow considered in Section 2, a simple order-of-magnitude argument shows
that the two flows are in fact essentially dynamically equivalent. At low Froude numbers
the streamwise advective acceleration caused by the sloping water surface has a negligible
effect on the mean momentum balance, and the streamwise pressure gradient is dynamically
equivalent to a down-slope gravitational force. All of the equations given in Section 2 are
unchanged, with the exception of equation (3), which must be modified to incorporate the
effect of the surface slope. The required modification to equation (3) does not affect the
results prebeated here.

Most of the preliminary measurements are profiles of mean velocity and Reynoldb stress.
Each profile has ten measurement points spaced unequally in the vertical direction, with the
densest sampling in the region where a logarithmic velocity profile was expected. The record
length at each measurement station was six minutes, so that the time required to produce
a set of measurements for one profile was one hour. We chose the number of measurement
points and the record length somewhat arbitrarily. The values that we used seemed to provide
a reasonable compromise between the desire for good statistics and the desire to complete the
measurements in a reasonable amount of time. The record length was in all cases much longer
than the time scale h/U required for energetic eddies to be advected past the measurement
station.

In order to test in a simple way the ability of a six-minute record to produce stable means,
we took a long record of the strearnwise velocity at a station 3 cm above the bottom. We
then computed the running average ti(t,), defined by

t (t,) f j u(t)dt (31)

as a function of the averaging time t.. Figure 4 shows the results of this calculation, in the
form of a departure of the running average from the mean of the total record, normalized
by the mean of the total record. Figure 4 indicates fluctuations of order 2% to 3% for aver-
aging times less than about 2000 s, and fluctuations that are an order of magxiitude smaller
for averaging times greater than about 2000 s. These results suggest that an averaging time of

18



six minutes is sufficient to produce estimates of mean velocities that are within a few percent of
the true mean. Estimates of Reynolds stress based on six-minute averages probably have much
larger departures from the true Reynolds stress, because the instantaneous Reynolds stress
is typically more intermittent than the instantaneous streamwise velocity. In addition, the
standard deviation of the instantaneous Reynolds stress is comparable to the mean Reynolds
stress, while the standard deviation of the instantaneous streamwise velocity is an order of
magnitude smaller than the mean streamwise velocity.
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Figure 4: Running average ai(t.), defined by equation (31), as a function of averaging
time t.. The vertical axis is the departure of the running average from the
mean of the total record, normalized by the mean of the total record.

Figure 5 shows three consecutive mean velocity profiles and three consecutive Reynolds
stress profiles, in order to demonstrate repeatability. Both the mean velocity and the Reynolds
stress have roughly the expected vertical distribution, and both are quite repeatable. As
expected, the variability of the Reynolds stress estimates is much larger than the variability
of the mean velocity estimates.

19



A

10 
RUN 1E (DRU

0 RUN 2/ i E RUN 3

o

a
> 1.0)

m>0

LJ

F

0.1 I II
0 2 4 6 8 10 12 14

HORIZONTAL VELOCITY (cm/s)

B

12 [* RUN I

E
o 0 0 RUN 2

M0 E C3 RUN 3

0 I

0.05 0'00 01 -. 5-. 02

M

,-J -- C :: 0

0.05 0 -0.05 -0.1 -0.15 -0.2 -- 25

REYNOLDS STRESS (rw)
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Mean velocity profiles obtained at the center of the channel and at various distances from
the upstream end of the flume indicate that the mean velocity is fully developed within about
9.2 m or 75 water depths of the entrance, roughly as expected (see Figure 6A). The slope of
the logarithmic region of the velocity profile does not change appreciably between 9.2 m and
15.6 m. The Reynolds stress profiles show a trend, however, with increasing values of stress
all the way to 15.6 m (see Figure 6B). We have not identified the cause of the continuing
evolution of the Reynolds stress, and we have not determined whether it is repeatable. It
is possible that the Reynolds stress requires a longer entrance length than does the mean
velocity.

Velocity profiles and stress profiles at different cross-stream positions in 5-cm intervals
from the flume centerline indicate that the central 20 cm of the flow can be considered
independent of cross-stream position (see Figure 7), in rough agreement with Nakagawa's
formula (see Section 2). It is interesting to note in Figure 7 that the near-surface stress close
to the side walls changes sign, and that there is a corresponding sign change in the velocity
gradient d-/dz.

3.2 PROFILES OF MEAN VELOCITY, REYNOLDS STRESS AND
TURBULENCE INTENSITY

We chose five flow regimes at a fixed nominal depth of 12 cm and nominal surface speeds
of 10, 20, 30, 40 and 50 cm/s in order to investigate in detail the vertical structure of mean
velocity, Reynolds stress and turbulence intensity. The flume settings used to achieve these
regimes are given by Butman and Chapman (1989). In all cases the measurement station
was on the centerline of the flume at a position 12.8 m from the upstream end. Each vertical
profile had ten measurement stations and the record length at each station was six minutes,
as in the preliminary measurements. Table I shows the actual depth, water temperature and
bottom slope for each case. We set the bottom slope of the flume as closely as possible to
an a priori estimate of the value required to drive the flow in a one-dimensional state. We
did not carry out detailed measurements of the water depth as a function of position, and we
therefore do not know whether the water surface was in fact parallel to the bottom. Order-
of-magnitude estimates indicate, however, that the small departures from one-dimensional
flow that probably occurred had a small effect on the mean momentum balance, so that the
flows were approximaLely the same as the idealized flow discussed in Section 2. As stated in
Section 3.1, all of the equations presented in Section 2 are unchanged by the small departures
from a one-dimensional state, with the exception of equation (3). The required modification
to equation (3) does not affect the results presented here.

In our analysis of the velocity measurements, we rotated the coordinate system at each
point so that the z-component of the mean velocity was zero. Use of a different rotation angle
at each elevation is not quite consistent (see Section 3.2.2) but the required rotations were
small in all cases, and the effect of the rotation had very little quantitative and no qualitative
effect.
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Table 1: Test Conditions for Velocity, Stress and Intensity Profiles.

Depth at Nominal
Measurement Flow Water

Test Station Speed Bottom Temperature
(cm) (cm s- 1 ) Slope (°C)

1 12.1 10 0.00 7.6
2 11.3 20 1.15 x 10- 4  20
3 11.5 30 2.69 x 10- 4 20
4 11.6 40 4.62 x 10- 4  20
5 11.4 50 7.31 x 10 - 4  20

3.2.1 Initial Analysis of Mean Velocity and Reynolds Stress

In our initial analysis of Reynolds stress profiles, we used only the measurements well
outside of the viscous region near the bottom (z > 50i/u,) and we obtained an estimate
of the bottom stress rb for each elevation by using equation (5). We then computed the
mean of the estimates of rb for all elevations, divided the mean by the density, and took the
square root of the resulting value to obtain an estimate of the shear velocity. We determined
corresponding 95% confidence intervals by linearizing the estimation problem (e.g. Draper
and Smith, 1966), and assuming normally distributed, uncorrelated residuals. We call this
method for estimating the shear velocity the "Reynolds stress technique."

In our initial analysis of mean velocity profiles, we used only the measurements in the
region where a logarithmic profile was expected (50v/u. < z < 0.2h), and we regressed the
mean velocity against In(z) in order to estimate the shear velocity (see equation [101). We used
standard estimation techniques (e.g. Draper and Smith, 1966) to determine corresponding
95% confidence intervals. We call this method for estimating the shear velocity the "log
profile technique."

Table 2 shows estimates of the shear velocity based on the log profile technique and the
Reynolds stress technique, with corresponding 95% confidence intervals, normalized corre-
lation coefficients (r2 ), and number of measurements used in the estimate (N). Although
the regressions produced reasonably good fits to the measurements (indicated by fairly high
values of r 2 ), estimates of shear velocity based on the log profile technique were consistently
larger than estimates based on the Reynolds stress technique in Tests 2 through 5, and the
two estimates were not consistent in Tests 2 and 4. We are not sure why these discrepancies
occurred. A possible contributing factor was neglect of viscous effects and the wake correction
in the log profile technique. A second possible contributing factor was the presence of veloc-
ity fluctuations at very low frequencies (see Section 3.3), which may have caused estimates
of mean velocity and Reynolds stress based on six-minute averages to have relatively large
errors, and may have caused errors at different points in the profiles to be correlated with
each other. A third possible contributing factor was the small vertical extent of the region in
which a logarithmic mean velocity profile was expected (typically 1 to 2 cm).
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Table 2: Initial Estimates of Shear Velocity.

Log profile technique Reynolds-stress technique
Test u. (cm/s) rZ N Iu (era/s) N

1 0.49 2 0.50 ± 0.04 6
2 1.06 ± 0.15 0.991 5 0.81 ± 0.06 9
3 1.48 ± 0.28 0.984 5 1.20 ± 0.13 9
4 1.94 ± 0.15 0.997 5 1.56 ± 0.17 9
5 2.32 ± 0.19 0.997 5 2.00 ± 0.21 9

3.2.2 Detailed Analysis of Mean Velocity and Reynolds Stress

In order to resolve the differences between estimates of shear velocity based on the log
profile technique and the Reynolds stress technique, we used a slightly more sophisticated
analysis of the mean velocity profile, in which we fit mean velocity measurements in the
entire water column to equation (6) in Section 2.4, with the wall function f(z+) and the
wake correction W( ) given by equations (8) and (9), respectively. Because we were not sure
that the origin of the measurement system coincided with the true bottom of the flume, we
replaced the vertical coordinate z in equation (6) by the quantity z', defined by

zI = z + A. (32)

Here A is the displacement of the true bottom of the flume below the origin of the measure-
ment system. We fit equation (6) to the measured mean velocity profiles by least-squares
regression, using the shear velocity u., the Coles parameter 11 and the displacement A as
fitting parameters. We used the Coles parameter as a fitting parameter because its value is
not well established for open-channel flow, and because Nezu and Rodi (1986) found that it
may depend on Reynolds number. We solved the nonlinear regression problem by using an
iterative technique in which one linearizes the problem about estimates of the parameters,
and then solves the linearized problem repeatedly, updating the parameter estimates at each
iteration. We estimated variances and confidence intervals for the parameters by linearizing
the regression problem about the final values of the parameter estimates. We call this method
for estimating the shear velocity, the Coles parameter and the displacement A the "velocity
profile technique."

Table 3 shows estimates based on the velocity profile technique, with corresponding 95%
confidence intervals. The values of the kinematic viscosity v indicated in the table were deter-
mined as a function of temperature by using a formula given by White (1979). The estimates
of shear velocity in Table 3 are consistent with estimates based on the Reynolds stress tech-
nique (see Table 2). The estimates of the displacement A are consistent with expectations,
although the confidence intervals are in most cases large enough so that estimates of A do
not differ significantly from zero. The relatively large value of A in Test 4 may indicate an
operator error in which the LDV was positioned incorrectly. The estimates of the Coles pa-
rameter R shown in Table 3 are consistent in magnitude with the values found by Nezu and
Rodi (1986), although we do not find a consistent increase with Reynolds number, as they
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did. The confidence intervals are possibly large enough to obscure a consistent dependence
on Reynolds number.

Table 3: Results of Velocity Profile Technique.

Test IV (cm2 /s) U. (cm/s) (cm) H
1 0.0142 0.51 ± 0.01 0.01 ± 0.03 0.20 ± 0.15
2 0.0102 0.87 ± 0.01 -0.05 ± 0.03 0.27 ± 0.09
3 0.0102 1.21 ± 0.02 -0.01 ± 0.03 0.37 ± 0.15
4 0.0102 1.58 ± 0.01 -0.11 ± 0.02 0.26 ± 0.10
5 0.0102 1.99 ± 0.03 -0.01 ± 0.04 0.27 ± 0.14

Figure 8 shows an example of a measured mean velocity profile and a fitted curve based
on equation (6) for Test 4 (with a nominal flow speed of 40 cm/s). Figure 9 shows mean
velocity measurements for all five tests in wall coordinates (iI(z)/u. as a function of zu./v)
together with the velocity profile given by equations (6) and (8) without the wake correction.
The wake correction is not included in the semi-empirical curve in Figure 9 because the wake
correction is different for each test, so that a single line would not represent all of the tests.
The measurements in Figure 9 diverge from the semi-empirical curve at large z, as expected.
The measurements collapse very well onto the semi-empirical curve in the wall region.

To compare the above results with measurements of Reynolds stress, we constructed semi-
empirical curves for the Reynolds stress by combining the estimates of u,, rI and A given in
Table 3 with equation (4), using equations (6), (8) and (9) to determine the mean velocity
gradient du/dz. Curves constructed in this manner compare quite well with measurements
of Reynolds stress, especially at lower flow speeds (see Figure 10). At higher flow speeds,
the calculated semi-empirical values are larger than the measured Reynolds stresses in the
thin viscous sublayer very near the bottom, and the measured Reynolds stress at the lowest
measurement point in fact changes sign (see Figure 11).

We are not sure why the measured Reynolds stress departs from the calculated Reynolds
stress very near the bottom, or why the Reynolds stress very near the bottom changes sign at
higher flow speeds. A possible explanation is interference of the bottom with the light beams
from the laser. A second possible explanation is the potential presence of weak secondary
mean flows in the y and z directions, which may transfer z momentum vertically, and may
therefore change the turbulent transfer of momentum by the Reynolds stress.

Our measurements of the z component of the mean velocity suggest inconclusively that
weak secondary mean motions may be present. In an idealized one-dimensional channel
flow, the z component of the mean velocity is zero. Measurements of the z component of
the mean velocity may be nonzero because of a small rotation of the measurement system
with respect to the mean flow direction. If this is the case, the ratio of the z component
to the x component of the mean velocity should be independent of z. In contrast, our
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measurements show that the ratio of the z component to the z component of the mean
velocity has a nonuniform vertical structure, with a relatively large negative value very near
the bottom at the centerline, and weaker positive values higher up in the water column (see
Figure 12). We find this structure at all flow speeds. This structure develops in a consistent
manner in z, from the upstream end of the channel to the measurement station, and it varies
in y. Although clearly not conclusive, these measurements suggest the possible presence of
secondary flows. The measurements of Nezu and Rodi (1986) are insufficient to address this
question in detail, because they did not measure the z component of the velocity at points
lower than 14 mrn above the bottom, and we see the clearest evidence of mean vertical flows
at locations well below this point.

3.2.3 Turbulence Intensities

Our measurements of turbulence intensities compare very well with the empirical ex-
pressions suggested by Nezu and Rodi (1986). For example, Figure 13 shows a comparison
of equation (17) and our measurements of < u 2 > in Test 1. The agreement between the
empirical expression and the measurements is comparable to that obtained by Nezu and Rodi
(1986). Figure 14 shows a comparison of equation (16) and our measurements of < w 12 >

in all five tests. Again, the agreement is comparable to that obtained by Nezu and Rodi
(1986). In Figure 14, the departure of the empirical curve from the measurements very near
the bottom is due to the fact that the empirical expression is valid only well outside of the
viscous sublayer.

3.3 SPECTRA

We carried out a brief investigation of spectra in order to determine whether the measured
spectra were consistent with the idealized spectra described in Section 3, and why we required
record lengths much longer than the time scale h/U in order to obtain accurate estimates of
mean velocities (see Figure 4). To investigate spectra, we used a half-hour record obtained
at an elevation of 3 cm above the bottom in a flow with a depth of 10 cm, a nominal speed
of 10 cm/s and a water temperature of 20 0 C. The mean velocity at the measurement point
was 8.4 cm/s and the shear velocity was about 0.47 cm/s. We also examined velocity records
obtained under other flow conditions, and found the same qualitative features described here.

Figures 15 and 16 show wavenumber spectra of the horizontal and vertical velocity fluctua-
tions, computed from frequency spectra by using the frozen turbulence hypothesis (see Section
2.5). Figures 15 and 16 also show theoretical curves for the inertial subrange, calculated from

equa ;i,, is (29) and (30). The spectra show several interesting features.

At high wavenumbers, the spectral density is nearly constant, possibly reflecting alias-
ing, a noise floor, or both. The vertical velocity spectrum shows well defined spikes at high
frequencies. The highest spike occurs at a frequency of about 6 hz, and the second-highest
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spike occurs at a frequency of about 12 hz. These spikes may be due to vibration of the probe
support (observed visually to have a natural frequency of several hertz), or some other cause.
The horizontal velocity spectrum shows a somewhat surprising amount of energy at relatively
low wavenumbers. The spectrum does not show a tendency to decrease with decreasing
wavenumber, even at the lowest resolved wavenumber, which corresponds to a wavelength of
about 600 cm and a "period" of about 70 s. These values are much longer than the spatial
scale h and the time scale h/U that characterize the energetic eddies.

The theoretical curves for the inertial subrange are close to the measurements at high
wavenumbers in the horizontal velocity spectrum, and somewhat further away from the mea-
surements in the vertical velocity spectrum. We did not expect to find a well developed
inertial subrange because of the relatively low Reynolds number hu./V. The fact that the
theoretical curves in Figures 15 and 16 are not completely consistent with the measurements is
therefore not disturbing. On the other hand, the fact that the theoretical curves are somewhat
consistent with the measurements is reassuring.

In order to examine low-frequency fluctuations in a slightly different way, we filtered the
horizontal velocity record in the time domain, by using a simple nonrecursive digital filter
with a symmetrical, triangular impulse response function. We chose this filter because of
simplicity and reasonably good frequency response characteristics. This filter removes energy
at frequencies higher than very roughly the inverse of the half-width of the filter.
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Figure 17 shows the filtered horizontal velocity record, with a filter hailf-width of 8 s. The
filtered record indicates fairly energetic fluctuations with time scales of about 30 s. This
result is interesting, because the lowest surface mode in the flume at a depth of 10 cm has a
period of roughly 30 s. Standing surface waves with small amplitudes could account for the
velocity fluctuations shown in Figure 17. The wavenumber spectrum (Figure 15) does not
have a peak at the wavenumber corresponding to a period of 30 s, which is about 0.025 cm - 1,
possibly because of poor spectral resolution.
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Figure 17: Filtered velocity record. Filter half width 8 s.

Figure 18 shows the filtered horizontal velocity record, with a filter half-width . 128
s. Surprisingly, this record shows fairly energetic, irregular fluctuations with time scales of
several minutes. We have not identified the cause of these low-frequency fluctuations, but we
think that they may have been caused by small fluctuations in pump performance, possibly
due to fluctuations in the power supplied to the pump, or fluctuations due to the mechanical
behavior of the pump itself. We do not think that these fluctuations were caused by surges in
pump output caused by operation in a range in which the head-discharge curve for the pump
has positive slope (e.g. White, 1979). According to the information that we have, the pump
was operating in a range in which the slope of the head-discharge curve was negative. We also
do not think that the low-frequency fluctuations were caused by instability in the hydraulic
system as a whole (flume, pump, return pipe, bypass pipe and settling basins), because a
simplified linear stability analysis shows that the system should have been linearly stable.
Conversations with the president of a pump-manufacturing firm confirmed that the problem
is likely due to fluctuations in delivery of water by the pump. He further indicated that any
reasonably priced, large-volume pump able to circulate sediment slurries would probably show
similar fluctuations. It should be noted that while the fluctuations shown in Figure 18 are a
significant fraction of the shear velocity, they are a very small fraction of the mean velocity.
This performance is probably excellent by almost any industrial standard.
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Figure 18: Filtered velocity record. Filter half width 128 s.

Straightforward order-of-magnitude arguments show that the low-frequency velocity fluc-
tuations described here have a negligible effect on the mean momentum balance in the flume,
and are therefore not important in determining the dynamics of the mean motion. This
result is confirmed by the reasonably good agreement between our expectations based on
previous results, and our measurements of mean velocities, Reynolds stresses and turbulence
intensities. The presence of low-frequency fluctuations may explain, however, why relatively
long records are required in order to obtain accurate estimates of mean values. In addition,
unwanted fluctuations at low frequencies may be important if one is interested in studying
the fluctuating component, in addition to the mcau :.c-.ponczt, -f turbulent channel flow.

4 SUMMARY AND CONCLUSIONS

In this report, we have summarized some of the important properties of one-dimensional
turbulent flow in an open channel, based on existing theoretical analyses and previous lab-
oratory measurements (Section 2). In addition, we have reported a measurement program
in the 17-Meter Flume, designed to determine the extent to which vertical profiles of mean
velocity and Reynolds stress are independent of along-channel and cross-channel position,
and the extent to which measurements of mean velocity, Reynolds stress, turbulence inten-
sity and spectra are consistent with expectations based on theoretical analyses and previous
measurements (Section 3).
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The 17-Meter Flume appears to be able to produce a flow that is approximately one-
dimensional, in which the mean velocity, Reynolds stress and turbulence intensity have ap-
proximately the expected structure. The LDV as currently configured seems to be able to
produce accurate measurements of mean velocity, Reynolds stress and turbulence intensity.

Unexpected oscillations with time scales of order 30 s are present in the velocity records.
These oscillations may ha-,e been caused by small-amplitude standing surface waves. They
do not seem to have an important effect on mean quantities and low-order statistics, but they
may be important if the low-frequency part of the spectrum is of particular interest in some
application. It may be possible to reduce these oscillations by redesigning the weir at the
downstream end of the raceway.

Unexpected fluctuations at low frequencies (time scales of several minutes) are present in
the flume, and may be caused by fluctuations in pump performance. These low-frequency
fluctuations do not seem to have an important effect on mean quantities and low-order statis-
tics, except for the fact tnat record lengths somewhat longer than expected may be required
in order to obtain accurate estimates of means. The low-frequency fluctuations may, however,
be important if the low-frequency part of the turbulence spectrum is of particular interest
in some application. It may be possible to eliminate low-frequency fluctuations in the flume
by installing a head tank, which could be designed to insulate the flow hydraulically from
fluctuations in pump performance.

Fluctuations at well-defined high frequencies of order 10 hz (possibly associated with struc-
tural vibrations) are present in the velocity records. The well-defined spectral peaks that we
find may in fact be aliased from higher frequencies. Measurements at higher sampling rates
suggest well-defined spectral peaks at a frequency of about 30 hz (personal communication.,
Y.C. Agrawal, Flow Research, Incorporated, Kent, Washington). These high-frequency fluc-
tuations do not seem to have an important effect on mean quantities and low-order statistics.
They may be important, however, if the high-frequency part of the turbulence spectrum is of
interest.

The LDV currently samples at a rate that is too slow for an accurate examination of the
high-frequency part of the turbulence spectrum, and the resolution of the analog-to-digital
conversion may be too coarse for some applications. These problems could be overcome in
part by increasing the sampling rate to 512 hz, which is possible in principle.
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